Types of nuclear instability:

- α Decay—Heavy nuclei emit ^4He nuclei via barrier penetration.
- β Decay—Nuclei with too many n or p are unstable to weak decay of p to n or n to p. In this decay electrons and positrons are emitted.
- γ Decay—Following either α or β decay, the final nucleus is almost always left in an excited state, and will de-excite by emitting a photon. But this photon has a million times the KE of a photon of visible light, because the spacing between nuclear energy levels is a million times the spacing of atomic and molecular energy levels!

In all quantum systems, the probability of any transition is independent of time. This means that if a system has a 50% probability of making a certain transition in 1 hour, and it has been sitting in its initial state for a year, it still has a 50% probability of making the transition in the next hour!
To express this mathematically,

\[\frac{1}{N} \frac{\Delta N}{\Delta t} = -\lambda = -\frac{1}{\tau}, \]

where \(\lambda \) is the transition probability per unit time, and \(\tau \) is the average lifetime.

Therefore

\[\frac{\Delta N}{\Delta t} = -\frac{N(t)}{\tau}, \]

which has the solution

\[N(t) = N(0) \exp[-\lambda t] = N(0) \exp(-t/\tau). \]

It is customary to define the half-life \(T_{1/2} \) as the time during which the decay has a 50\% probability of happening. Then, without calculus, you can instantly see that

\[N(t) = N(0) \left[\frac{1}{2} \right]^{t/T_{1/2}}. \]

An ancient unit is 1 Cu = 3.7 \times 10^{10} per second. The modern unit is 1 Bq = 1 per second.

Note that the rate of decay at any time, \(R(t) \), is given instantly by

\[\frac{N(t)}{\tau}. \]
NUCLEAR PROCESSES:

\[A + a \rightarrow b + B \]

\[
(M_A + M_a)c^2 + KE_i = (M_B + M_b)c^2 + KE_f.
\]

We define the \(Q \) value for the process as

\[Q = KE_f - KE_i. \]

Therefore

\[Q = [M_A + M_a - M_B - M_b]c^2. \]

If \(Q \) happens to be negative then there is a minimum kinetic energy in the "lab frame of reference" (\(A \) at rest) for which the process can occur:

\[KE_{a,\text{min}} = \left[1 + \frac{M_a}{M_A} \right]|Q|. \]
A radioactive nucleus has an average lifetime of only 100 minutes. If you started with a million such nuclei, how many would be left after 100 min? What is the half-life of this nucleus?

Answer: the number remaining would be 3.7×10^5 after 100 min. The half-life would be 69.3 min.

In a nuclear reaction, $a + A \rightarrow B + b$, the masses of initial and final states are 14070 and 14080 MeV respectively. What is the minimum lab kinetic energy of a that would allow this reaction to take place? Assume M_a/M_A is 0.1.

Answer: 11 MeV.

A nuclear process that is important astrophysically (in red giant stars) is the following. What goes in the blank?

$$^4\text{He} + ^{12}\text{C} \rightarrow \underline{\text{_______}} + \gamma.$$