Chapter 9:

Floating in a pond is a straight stick of length L with a bug at one end. If the bug walks to the other end of the stick, how far is it from its initial position? Bug mass m_{b}, stick mass m_{s}. Friction is negligible between stick and pond surface. Answer: $x_{b}=m_{s} L /\left(m_{s}+m_{b}\right)$.

Blobs of putty of masses m_{1} and m_{2} move directly toward one another at \mathbf{v}_{1} and \mathbf{v}_{2}. No external forces act. The two blobs fuse. What is their final velocity \mathbf{v} ? What do you get if $m_{1}=m_{2}$ and $v_{1}=2 v_{2}$?

In the previous collision, what's the ratio K_{f} / K_{i} ?
In an elastic, head-on collision with no external forces acting, a ball of mass m moving at \mathbf{v}_{0} collides with a mass $3 m$ at rest. What are the final speeds of the two balls after collision? Answer: $v_{2}=v_{0} / 2, v_{1}=$ $-v_{0} / 2$.

On a frictionless surface a soft object with speed v_{0} and mass m is moving along the y axis toward the origin, while another similar object with the same speed and mass $2 m$ is moving along the x axis toward the origin. They collide at the origin and stick together. What is the velocity of the system after
collision? Answer: The final speed is $0.745 v_{0}$ at an angle of 26.6° with the $+x$ axis.

A ball falling vertically strikes a level floor at v_{0} and bounce upward at half that speed. What average force acted on the ball during the collision, which lasted time Δt ? Answer:

$$
\mathbf{F}_{\mathrm{avg}}=\widehat{\mathbf{j}} \frac{3 m v_{0}}{2 \Delta t}
$$

