From Ch. 8

- If the moon had $1 / 4$-th the radius of earth and $1 / 81$-th of the earth's mass what would be the acceleration due to gravity on its surface? Answer: $g_{m}=2 \mathrm{~m} / \mathrm{s}^{2}$.
- What would be the speed of a satellite of the earth, in a circular orbit of radius $10 R_{e}$? Answer: $2.5 \mathrm{~km} / \mathrm{s}$.
- If an object is launched from the surface of earth at v_{0}, how high does it go? Answer: measuring from the center of the earth, $\left.r_{\max }=R_{e} /\left[\left(v_{0}^{2}\right) /\left(2 g R_{e}\right)\right)-1\right]$. To get h, the distance above the surface, subtract R_{e} from $r_{\text {max }}$.
- An alien starship is in orbit above an alien planet. The radius of the orbit is $10^{8} \mathrm{~m}$ and the period is 10 hours. What is the mass of the planet? Answer: About $4.5 \times 10^{26} \mathrm{~kg}$.
- An object is held at rest a distance h above the earth's surface, where h can be any distance at all. When dropped, with what speed does it impact the surface? [Neglect the atmosphere, and the earth's various motions.] Answer:

$$
v_{f}=\sqrt{2 g R_{e}\left[1-\left(R_{e} /\left(R_{e}+h\right)\right)\right]} .
$$

- An object is in an elliptical orbit and at a given
instant it is halfway between its point of closest approach and point of furthest approach. How far is it from the body it is orbiting, if $b / a=0.5$ for the orbit. Answer: $r=a$.

