Kinematics of rigid body rotation:

\[\omega(t) = \omega(0) + \alpha t. \]

\[\theta(t) = \theta(0) + \omega(0) t + \frac{1}{2} \alpha t^2. \]

\[\omega^2 = \omega(0)^2 + 2\alpha[\theta - \theta(0)]. \]

These expressions assume that the angular acceleration \(\alpha \) is a constant.

Note that \(\alpha \) and \(\omega \) are vectors, with both magnitude and direction.

The magnitudes are given (for rigid body rotation) by \(\omega = \Delta \theta / \Delta t \), and by \(\alpha = \Delta \omega / \Delta t \), as \(\Delta t \to 0 \)

Relation between Angular and Linear quantities:

\[v_t = r\omega, \text{ and } a_t = r\alpha. \]

\[a_r = \frac{v_t^2}{r} = r\omega^2. \]
How to get the acceleration a of any point on a spinning rigid body:

$$a = a_r + a_t.$$

$$a_r = r\omega^2 \text{ and } a_t = r\alpha.$$

Therefore $a = r\sqrt{\omega^4 + \alpha^2}$.

If we define ϕ as the angle between a and a_r, then we instantly see that

$$\phi = \tan^{-1}\left[\frac{a_t}{a_r}\right].$$
A rigid disc spinning about its center has $\alpha = -2 \text{ rad/sec}^2$ and $\omega(0) = 20 \text{ rad/sec}$. How far does it turn in the next 10 seconds? [100 rad] What is its angular speed after 10 seconds? [Zero.] What is its angular speed after 15 seconds? [−10 rad/sec]

A spinning rigid body has ω of 10 rad/sec, α of 80 rad/sec2, at a certain instant, and we fix our attention on a point 1 m from the axis of spin. What is the acceleration a of this point on the body, and what angle does it make with a line running from the point to the center of rotation? [The magnitude of a is 128 m/s2 and the angle it makes is 38.7° with a radius line.]

A car is rounding a curve with a radius of 200 m at a speed of 30 m/s. The mass of the car is 1000 kg. If the car is on the verge of skidding, what is the coefficient of static friction μ_s between tires and road? [0.45]
• Show that for a conical pendulum, with string of length \(l \) making an angle \(\theta \) with the vertical, thus moving in a circle of radius \(r = l \sin \theta \), the tension in the string is \(T = mg / \cos \theta \) and the constant speed of the pendulum is

\[
v = \sqrt{gr \tan \theta}.
\]

Note the answer could have been expressed in terms of \(l \) instead of \(r \).

Consider a roller coaster with a circular loop of radius 100 m. A man is riding in the car sitting on a spring scale. When he and the car are completely upside down at the top of the loop, travelling at 50 m/s, what does the spring scale read if the man’s mass is 50 kg? [Answer: 750 N, compared to a normal “weight” of 500 N.] Do you see how this is similar to the bucket of tennis balls, or bucket of water, swung in a vertical circle?