CH. 6 EXAMPLES:

- A force changes the speed of a 10 kg mass from 2 m / s to $4 \mathrm{~m} / \mathrm{s}$. How much work did it do? Answer: 60 J.
- A block on a horizontal table with coefficient of kinetic friction μ_{k} is pulled by force \mathbf{F} at an angle of θ with the horizontal. How much work does \mathbf{F} do, if the block moves a distance D along the table in the direction of the horizontal component of \mathbf{F}, at constant velocity? The answer should depend on μ_{k}, m, g, D and θ. How much work is done by friction in the same situation? How much work is done by the net force $\Sigma \mathbf{F}$ in this same situation?
- A block of mass m is pulled vertically upward by a string, exerting a force \mathbf{T}. If the block is at rest at $t=0$ what power is being delivered to the block by the string at time $t>0$?
- An object of mass M initially at rest breaks into two equal pieces with equal and opposite velocities, \mathbf{v} and $-\mathbf{v}$. By how much did its kinetic energy change, and how much work was done in whatever internal process caused it to break up?
- A block of mass m is slid up a ramp making an angle θ with the horizontal, and it travels a horizon-
tal distance D along the table the ramp is on, in the process. The block's speed remains constant. The force that is pulling the block, \mathbf{F}, is upward along the ramp, making an angle θ with the tabletop. Find the work done by the force in terms of D, m, g and θ.

