CH. 5 EXAMPLES:

- A block of mass m is sliding down a ramp making an angle θ with the horizontal. Friction is unimportant. Show that the acceleration of the block is $a=g \sin \theta$.
- Masses m_{1} and m_{2} are attached by a string of negligible mass and are hanging straight down from a string attached to the upper mass, m_{1}. If the system of two masses is accelerating vertically downward at $a=g / 4$ with both strings taut, show that the tension in the upper string is $(3 / 4)\left(m_{1}+m_{2}\right) g$.
- A conical pendulum hangs from a string of length ℓ that makes an angle θ with the vertical. If the pendulum bob moves in a circle at constant speed v show that this speed must be $v=\sqrt{g \ell \sin \theta \tan \theta}$.
- A rock rests on the bottom of a bucket which is attached to a long string. The whole system is swung in a vertical circle of radius ℓ as in class. What force does the bottom of the bucket exert on the rock of mass m at the instant the bucket is precisely upside down at the top of the circle, travelling at speed v ? What is the minimum value of v such that the rock
will just maintain contact with the bottom of the bucket at the top of the circle.
Answer: $n=m\left(\left(v^{2} / \ell\right)-g\right), v=\sqrt{g \ell}$.
- A block slides down a ramp making an angle θ with the horizontal. The coefficient of kinetic friction between block and ramp is μ_{k}. Show the acceleration of the block is $a=g\left(\sin \theta-\mu_{k} \cos \theta\right)$. Find μ_{k} if the block slides at constant velocity with ramp angle $\theta=30^{\circ}$. Answer: $\mu_{k}=0.58$.
- A block of mass m_{1} can slide (frictional coefficient μ_{k}) on a horizontal tabletop. A string of negligible mass attaches it over a frictionless peg to a hanging mass m_{2} which is attached to another mass m_{3} by another short string. If the hanging masses are allowed to fall vertically, what is the tension in the string joining these two masses? Answer: $T=\left(m_{1} m_{3}\left(1+\mu_{k}\right) g\right) /\left(m_{1}+m_{2}+m_{3}\right)$.
- Show that the greatest speed with which a car can travel without skidding around an unbanked curve of radius 1000 m , if the coefficient of static friction between tires and road is $\mu_{s}=1.0$, is $100 \mathrm{~m} / \mathrm{s}$.

