Some 2nd Law Examples:

• Two boxes of masses m_1 and m_2 are connected by a string of negligible mass. Box 2 is pulled across a frictionless level table by a force \mathbf{F} of constant magnitude and direction. What is the tension T in the string joining the two boxes as they accelerate across the tabletop?

• Three boxes of masses m_1 , m_2 and m_3 are touching on a level, frictionless tabletop. A force \mathbf{F} of constant magnitude and direction is applied to the trailing box, and the three boxes accelerate together. What force does box 2 exert backward on box 1 (the box to which the force \mathbf{F} is applied) as the three boxes accelerate together.

• A box of mass m_1 slides on a level, frictionless tabletop, due to the force exerted by a string which runs over a peg to a hanging mass m_2 . If the hanging mass is falling vertically, what is the tension T in the string joining the boxes?

• Two boxes of masses m and 3m are joined by a spring of negligible mass and force constant k. A constant horizontal force is applied to the leading box of mass m and the system of two boxes slides across a frictionless level tabletop due to this applied force. At a moment when the two boxes have the same acceleration \mathbf{a} , by how much has the spring been stretched?

