CHAPTER 17 EXAMPLES:

- A gas consist of 10^{27} atoms at a pressure of 10^{6} $\mathrm{J} / \mathrm{m}^{3}$ and a temperature of 300 K . It's in a container. What's the volume of the container?
Answer: $4.14 \mathrm{~m}^{3}$ or 4140 liters.
- A certain substance melts at 100 K and has heat capacity $20 \mathrm{~J} /(\mathrm{kg}-\mathrm{K})$. If L_{f} is $50 \mathrm{~J} / \mathrm{kg}$ and there are 10 kg of the substance, initially at 50 K , how much heat must be added to liquify it completely?
Answer: $1.05 \times 10^{4} \mathrm{~J}$.
- A material has $\beta=10^{-5} / \mathrm{K}$ and is initially at a density of $1000 \mathrm{~kg} / \mathrm{m}^{3}$. If its temperature changes by $\Delta T=100 \mathrm{~K}$, how does its density change?
Answer: $\Delta \rho=-1 \mathrm{~kg} / \mathrm{m}^{3}$, a change of 0.1%.
- A gas consists of molecules with a mass of 5.3 $\times 10^{-26} \mathrm{~kg}$, at a pressure of $1 \times 10^{5} \mathrm{~J} / \mathrm{m}^{3}$, at a temperature of 300 K . What is its density?
Answer: $1.28 \mathrm{~kg} / \mathrm{m}^{3}$. (The typical density of air, which is mainly O_{2} and N_{2}, is $1.2 \mathrm{~kg} / \mathrm{m}^{3}$ at sea level and $15^{\circ} \mathrm{C}$.

