CHAPTER 17 EXAMPLES:

• A gas consists of 10^{27} atoms at a pressure of 10^6 J/m3 and a temperature of 300 K. It’s in a container. What’s the volume of the container?
Answer: 4.14 m^3 or 4140 liters.

• A certain substance melts at 100 K and has heat capacity $20 \text{ J}/(\text{kg-K})$. If L_f is 50 J/kg and there are 10 kg of the substance, initially at 50 K, how much heat must be added to liquify it completely?
Answer: $1.05 \times 10^4 \text{ J}$.

• A material has $\beta = 10^{-5}/\text{K}$ and is initially at a density of 1000 kg/m3. If its temperature changes by $\Delta T = 100 \text{ K}$, how does its density change?
Answer: $\Delta \rho = -1 \text{ kg/m}^3$, a change of 0.1%.

• A gas consists of molecules with a mass of 5.3×10^{-26} kg, at a pressure of 1×10^5 J/m3, at a temperature of 300 K. What is its density?
Answer: 1.28 kg/m^3. (The typical density of air, which is mainly O$_2$ and N$_2$, is 1.2 kg/m^3 at sea level and 15° C.)