Chapter 15:

In a vacuum chamber on earth, a cylinder of height D contains a gas whose density within the cylinder varies like $\rho(y)=\left[\rho_{0} / D\right](D-y)$, with the bottom of the cylinder being at $y=0$. Show that the pressure exerted by the gas on the bottom of the cylinder is $\left(\rho_{0} g D\right) / 2$.

An object of mass M is hung from a spring scale. The object has a density 1.5 times that of water, and a volume of $0.5 \mathrm{~m}^{3}$. If the object is suspended from the scale in a beaker of water, completely submerged, what does the scale read? The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{2}$ and $g=10 \mathrm{~m} / \mathrm{s}^{2}$. What would the scale read with the object in air, neglecting the buoyant force due to the air, which is very small.

Answer: In water, 2500 N. In air, 7500 N. Thus the water provides 5000 N of support.

A liquid is flowing in a tube of area A , at speed v_{1}. If the tube narrows down to $a=A / 10$, how does the speed change?
Answer: $v_{2} / v_{1}=10$.
A liquid is flowing in a tube of area $1 \mathrm{~m}^{2}$ at $10 \mathrm{~m} / \mathrm{s}$,
under a pressure of $10^{6} \mathrm{~N} / \mathrm{m}^{2}$. As the tube rises 10 m , it narrows to an area of $0.3 \mathrm{~m}^{2}$. The liquid has a density of $1000 \mathrm{~kg} / \mathrm{m}^{2}$. What is the pressure in the liquid when it is 10 m above its original level?
Answer: $3.95 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$.

