Chapter 15:

In a vacuum chamber on earth, a cylinder of height D contains a gas whose density within the cylinder varies like $\rho(y) = [\rho_0/D](D-y)$, with the bottom of the cylinder being at y = 0. Show that the pressure exerted by the gas on the bottom of the cylinder is $(\rho_0 g D)/2$.

An object of mass M is hung from a spring scale. The object has a density 1.5 times that of water, and a volume of 0.5 m³. If the object is suspended from the scale in a beaker of water, completely submerged, what does the scale read? The density of water is 1000 kg/m² and g = 10 m/s². What would the scale read with the object in air, neglecting the buoyant force due to the air, which is very small.

Answer: In water, 2500 N. In air, 7500 N. Thus the water provides 5000 N of support.

A liquid is flowing in a tube of area A, at speed v_1 . If the tube narrows down to a = A/10, how does the speed change?

Answer: $v_2/v_1 = 10$.

A liquid is flowing in a tube of area 1 m^2 at 10 m/s,

under a pressure of 10^6 N/m². As the tube rises 10 m, it narrows to an area of 0.3 m^2 . The liquid has a density of 1000 kg/m². What is the pressure in the liquid when it is 10 m above its original level?

Answer: $3.95 \times 10^5 \text{ N/m}^2$.