Chapter 14:

A very long string has $10^{-4} \mathrm{~kg} / \mathrm{m}$, and transports a wave with $\omega=10 / \mathrm{sec}, \mathrm{A}=0.01 \mathrm{~m}$, at $v_{p}=1 \mathrm{~m} / \mathrm{s}$. What power is being transported by the wave?
Answer: 5×10^{-7} Watts.

A standing wave on a string 1 m long travels at 100 m / s. It is fixed at both ends, and the standing wave has 10 half-wavelengths from end to end. What is the frequency of this standing wave?
Answer: 500 Hz .

A sound source has level β_{1} of 20 dB at a certain distance. If it is moved closer, to $1 / 4$ the original distance, what is its new sound level β_{2} ?
Answer: 32 dB .
A standing wave on a string 1 m long has frequency 1000 Hz , and displays 3 half-wavelengths. What is the tension in the string if it has a mass of 10^{-5} kg / m ?
Answer: 4.5 N .

An ambulance is travelling at $100 \mathrm{~m} / \mathrm{s}$ down a long
straight street, with a siren that has a rest frequency of 1000 Hz . The speed of sound is $340 \mathrm{~m} / \mathrm{s}$. A pickup truck at the other end of the street is travelling directly toward the ambulance, also at $100 \mathrm{~m} / \mathrm{s}$. What siren frequency does the loser in the pickup truck hear?

Answer: 1833 Hz.

In a dispersive medium, the phase speed of waves is $1000 \mathrm{~m} / \mathrm{s}$. A wave pulse is created (it can be viewed as a superposition of waves of many different wavelengths). The dispersion relation for the medium is $\omega(k)=b k^{3}$, where b is a positive constant. What is the group velocity of the pulse? This is the actual speed with which it propagates in the medium.

Answer: $3000 \mathrm{~m} / \mathrm{s}$.

