Chapter 13:

What are the period and frequency of oscillation of a mass of 1 kg on a spring with $k=4 \mathrm{~N} / \mathrm{m}$?
Answer: $\mathrm{T}=\pi \mathrm{sec}, \mathrm{f}=(1 / \pi) \mathrm{Hz}$.

A mass on a spring is pulled out to $x=A / 2$ and released with an initial velocity. If $A=1 \mathrm{~cm}$ and ω $=1 \mathrm{rad} / \mathrm{s}$, what is the phase δ and what is $v_{x}(0)$?
Answer: Taking a solution of the form

$$
x(t)=A \cos [\omega t+\delta],
$$

we find $\delta=1.05 \mathrm{rad}$, and $v_{x}(0)=-0.865 \mathrm{~cm} / \mathrm{s}$.
What is the acceleration $a_{x}(0)$ of the mass on spring in the example above?
Answer: $-0.5 \mathrm{~cm} / \mathrm{s}^{2}$.

A baseball bat is hung as a physical pendulum about the grip end. Its rotational inertia about that end is $I=\kappa M L^{2}$ and its center of mass is at $r_{\mathrm{cm}}=(3 / 4) L$. If the bat is set into small oscillations its period is 2 sec . What is the value of κ if the bat's mass is 3 kg and its length is 1 m ?

Answer: κ will be 0.76.

If an oscillator has $K / E=1 / 7$, what position is it at, at that moment?
Answer: $x= \pm 0.926 \mathrm{~A}$.

An oscillator has $E=10 \mathrm{~J}$ and in one cycle it loses 2 J of energy. What is Q, and what kind of damping does the oscillator experience?
Answer: $\mathrm{Q}=10 \pi=31.4$ and the oscillator is underdamped.

