Chapter 12:

For drawings consult your class notes, based on what the instructor sketched on the blackboard.
A mass of 100 kg is suspended by ropes as shown in the sketch done on the board. Rope 1 runs to a vertical wall and rope 2 runs to the ceiling. Rope 1 makes an angle θ_{1} with the horizontal and rope 2 makes an angle θ_{2} with the horizontal. Suppose that $\theta_{2}=45^{\circ}$ and $\theta_{1}=20^{\circ}$. What is the tension in the ropes? Answer: $T_{1}=780 \mathrm{~N}, T_{2}=1037 \mathrm{~N}$.
A uniform rod of mass M and length L is propped against a very smooth wall and makes an angle θ with the vertical. It stays there. What frictional force is acting at the point where the rod touches the floor, if there is no friction with the wall?
Answer: $f_{s}=M g \tan \theta / 2$.
An empty box of mass M is being pushed at constant velocity across a level table by a constant horizontal force \mathbf{F} applied at a point a distance h above the table surface. The box has height L and width w in the direction of motion. What is the largest possible value of h such that the box doesn't tip over forward when pushed? If $M=1 \mathrm{~kg}, w=0.1 \mathrm{~m}$ and $F=1$ N , find $h_{\text {max }}$.

Answer: $h_{\text {max }}=M g w /(2 F)=0.5 \mathrm{~m}$.
The gravitational potential energy of the center of mass of an object, as a function of θ, the angle by which it is tipped away from an axis perpendicular to the surface of the earth, is $U_{g}(\theta)=-\alpha \theta+\beta \theta^{2}$. Here α and β are positive constants. At what angle θ_{0} is the object in equilibrium, and is it stable or unstable equilibrium?

Answer: $\theta_{0}=\alpha /(2 \beta)$, and it is a point of stable equilibrium (minimum of U_{g}).

CHAPTER 11:

Calculate the torque due to a force $\mathbf{F}=\widehat{\mathbf{k}} F$ applied at $\mathbf{r}=(\widehat{\mathbf{i}} a+\widehat{\mathbf{j}} b)$.
Answer: $\vec{\tau}=F(\widehat{\mathbf{i}} b-\widehat{\mathbf{j}} a)$.
A dumb-bell-like object has sliding masses, each of mass m. If the object is spinning about its center of mass with angular speed ω_{i}, how fast is it spinning when the masses slide to $1 / 4$ of their previous distance from the center of mass?:

Answer: $\omega_{f}=16 \omega_{i}$.
On a playground is a merry-go-round that is just a
freely rotating disc with rotational inertia I_{cm}. The disc has mass M and radius R. A little boy of mass m_{b} runs at velocity \mathbf{v}_{0} tangent to the rim of the disk and grabs on. The disk was originally rotating at angular speed ω_{0} but after the little boy jumps on, the system is at rest. What was the original angular speed ω_{0} of the disc?
Answer: $\omega_{0}=\left(m_{b} v_{0} R\right) / I_{\mathrm{cm}}$.

