Thermal expansion:

$$\Delta L = \alpha L_0 \Delta T.$$

$$\Delta A = 2\alpha A_0 \Delta T.$$

$$\Delta V = 3\alpha V_0 \Delta T.$$

DENSITY EFFECT:

$$\Delta \rho = -3\alpha \rho_0 \Delta T.$$

NUCLEAR LABELS:

When we speak of 12 C, 40 Ca or 208 Pb we are telling you A, the number of nucleons (p and n) in the nucleus of the atom.

AVOGADRO'S NUMBER: $N_A = 6.02 \times 10^{26}$ constituents per A kg.

IDEAL GAS LAW: $pV = Nk_BT$.

 k_B is a fundamental constant relating energy in J to temperature in K.

Note that for a given gas in a given system, pV/T is a constant.

DETAILS AND DEFINITIONS:

Atomic mass unit (u or Da): u is 1/12-th of the mass of a 12 C atom, which works out to about 1.66 $\times 10^{-27}$ kg.

Avogadro's Number: $N_A = 6.02214 \times 10^{26}$ is the number of atoms in 12 kg of ¹²C. This is called a "kilomole."

Gas Constant: R = 8314 J/kilomole-K. $R = N_A k_B$.

Boltzmann's Constant: $k_B = 1.381 \times 10^{-23} \text{ J/K}.$

The average kinetic energy of a constituent of a system of temperature T is $KE_{\text{avg}} = (3/2)k_BT$.

The internal energy of an "ideal" gas is

$$U = (3/2)Nk_BT.$$

Here N is the number of constituents.

What makes a gas "ideal" is the assumption that the atoms or molecules have only kinetic energy, and no potential energy due to interaction with one another. Real gases have a behavior surprisingly close to an ideal gas, unless they are very cold and dense.

$$pV = Nk_BT = nRT.$$

INTERNAL ENERGY OF AN IDEAL GAS:

$$U = (3/2)Nk_BT.$$

RMS SPEED OF A MOLECULE:

$$v_{\rm rms} = \sqrt{3k_BT/m}$$
.

The Equipartition Concept:

Every separate degree of freedom in a system at temperature T receives

$$\frac{1}{2}k_BT$$

. Thus a point particle free to move in 3-dimensional space has $\,$

$$3 \times \frac{1}{2}k_B T = \frac{3}{2}k_B T$$

of energy.

- Calculate the mass of a 12 C atom using Avogadro's number, and using the nucleon mass $(1.67 \times 10^{-27} \text{ kg})$.
- What is the pressure of a gas with 10^{27} atoms at 300 K in a volume of a cubic meter?
- What volume is occupied by 1 kilomole of a gas at atmospheric pressure and 273 K?
- A gas at a pressure of 10^6 J/m³, consisting of 10^{26} molecules, expands its volume by one cubic meter. By how much did its temperature change?
- A gas undergoes a process where $p_2 = p_1/2$, $V_2 = V_1/3$. What is T_2/T_1 ?
- A gas undergoes a process such that $p_f = p_i/3$, $V_f = V_i/3$, starting at $T_i = 300$ K. If there is 1 kilomole of gas, by what amount ΔU did the internal energy of the gas change?
- A gas consists of atoms of mass 4×10^{-26} kg. If the gas is at 300 K, what is the average KE of a single atom?

If this gas has a pressure of 10^6 J/m³ and volume of 0.01 m³ what is its total internal energy U?

How many kilomoles of gas are there?

How many atoms of gas are there?