STATES OF MATTER: [In order from highest to lowest potential energy]

- Plasma— Atoms have lost electrons, so that the system is a mixture of charged particles, positively charged atoms and negatively charged electrons. Most of the matter in the universe is in the form of a plasma. Everyday example: fire.

- Gas— atoms or molecules are roughly 10 diameters apart (for example in this room). Everyday example: air.

- Vapor— the constituents are microscopic clusters of molecules. Everyday example: clouds or fog.

- Liquid— the molecules or atoms are nearly in contact but can slide past one another. Everyday example: water.

- Solid— the molecules or atoms are in contact, and stay roughly in the same position relative to one another. Everyday example: a rock.
Young’s Modulus: Stretching or compressing a solid:

\[
\frac{F}{A} = Y \frac{\Delta L}{L_0}.
\]

Shear Modulus: Twisting a solid:

\[
\frac{F}{A} = S \frac{\Delta x}{h}.
\]

Bulk Modulus: Compressing a solid, liquid or gas:

\[
\Delta p = -B \frac{\Delta V}{V}.
\]

Typically \(Y \), \(S \) and \(B \) are all of order \(10^{11} \) J/m\(^3\).
• PRESSURE IN A LIQUID:

\[p = p_a + \rho gd. \]

• PASCAL’S PRINCIPLE:

\[\frac{F_1}{A_1} = \frac{F_2}{A_2}. \]

• GAUGE PRESSURE:

\[p = p_{\text{actual}} - p_a. \]

• BUOYANT FORCE:

\[B = \rho_{\text{liquid}} g V. \]

• CONTINUITY EQUATION:

\[A_1 v_1 = A_2 v_2. \]

• BERNOULLI’S EQUATION:

\[p + \frac{1}{2} \rho v^2 + \rho gy = \text{constant}. \]
An object less dense than water is held underwater by a thread. If the object has half the density of water, which is ρ_w, and a volume V, what is the tension in the thread? Answer: $T = (\rho_w g V)/2$.

An object less dense than water floats on the surface with a fraction of its volume f below the surface. What is f in terms of the density of the object, ρ, and the density of water, ρ_w? Answer: $f = \rho/\rho_w$.
Under ideal conditions the total internal energy of a gas can be expressed as

\[\mathcal{E} = \frac{3}{2} pV. \]

Thus we can say the pressure is a measure of the total internal energy per unit volume.

A very large cylindrical container is full of water. At a certain instant, there is a small hole a distance \(d \) below the water level, and a distance \(h \) above the container bottom. The water strikes the level ground on which the container sits, a distance \(D \) from the side of the container. Show that \(D = 2\sqrt{dh} \).

A horizontal pipe has a fluid flowing at speed \(v \) and pressure \(p_1 \). The pipe narrows down drastically in area so that the new flow speed is \(6v \). Show that the new pressure is \(p_2 = p_1 - (35/2)\rho v^2 \).