Ch. 20 Examples:

- Suppose a single loop of wire has a radius of 0.1 m and a resistance of 1 Ohm. If a uniform magnetic field is directed downward perpendicular to the plane of the loop and is increasing in strength at a rate of $10^{-2} \mathrm{~T} / \mathrm{s}$, what are the induced emf and current in the loop? What's the direction of the current?

If we apply Faraday's law of induction, since B is the only thing changing with time,

$$
\mathcal{E}=-((\Delta B) / \Delta t) \pi r^{2}
$$

Plugging in the numbers we get something like $-\pi \times 10^{4}$ Volts. The minus sign just means the induced emf and current oppose the flux change, so that means the current has to circulate in such a direction that the resulting \mathbf{B} points in the opposite direction to the direction \mathbf{B} is increasing, namely upward, and that means the induced current must circulate counterclockwise in the loop as seen from above. Its magnitude is of course $|\mathcal{E}| / R=\pi \times 10^{-4}$ Amps.

- As discussed in class, a solid conducting rod is travelling through a uniform magnetic field. If the rod is sliding on a U-shaped conductor, it forms part of a conducting loop of ever-increasing area. What is the induced current at a certain moment, if the B field magnitude is $10^{-4} \mathrm{~T}$, the length of the rod is 1 m , the resistance of the circuit at that certain time is 1 Ohm , and the speed of the rod is $100 \mathrm{~m} / \mathrm{s}$?

The flux change is $B \Delta A=B \ell \Delta x$ so the induced emf has magnitude $B \Delta A / \Delta t=B \ell v$. Thus the current is $I=B \ell v / R=10^{-2}$ Amps.

- What is the self-inductance of a coil if at some instant the total energy stored in the magnetic field within the coil is 100 J , and at that instant the current is 10 Amps?
$U=(1 / 2) L I^{2}$ so $L=2 U / I^{2}$ and if we plug in the numbers we get 2 Henries.

In a series RL circuit, the switch is thrown to put the resistor and inductor across a battery with a voltage of 100 Volts. If the resistance is 1 Ohm and the inductance is 1 Henry, what is the voltage across the inductor after 1 second?

With calculus you can show $I(t)=[\mathcal{E} / R](1-\exp (-R t / L))$. Again with calculus and the definition of self-inductance, this result leads to $V_{L}=$ $\mathcal{E} \exp (-R t / L)$. So that's the answer. If we plug in the numbers, we get 100 Volts $\times \exp (-1)=36.8$ Volts.

