Examples from Chapter 2!

- Suppose $x(t)=A+B t^{2}+C t^{3}$, where A, B and C are constants. What is $v_{x}(t)$?
- Suppose $x(t)=x(0) \exp (b t)$ where b is a constant. What is $v_{x}(t)$?
- Suppose $x(t)=A+B t^{2}+C t^{3}$, where A, B and C are constants. What is $a_{x}(t)$?
- A particle starts from $x(0)=0$ with $v_{x}(0)=0$, at constant a_{x}. In 10 sec it is travelling at $100 \mathrm{~m} / \mathrm{s}$. What is a_{x} and what is $x(10 \mathrm{sec})$? At this moment, the particle's acceleration instantaneously changes from a constant positive value to a constant negative value, and the particle comes to rest after travelling 100 more meters. What is the new value of a_{x} ?
- A ball near the earth's surface is thrown upward at $100 \mathrm{~m} / \mathrm{s}$. How high does it go? With what velocity does it arrive back at its starting point?
- Ball 1 is thrown downward toward the ground a distance D below at $v(0)$. At the same instant, ball 2 is thrown upward from ground level on the same vertical line, at $v(0)$. Show that the balls will collide at

$$
y=\frac{D}{2}\left[1-\frac{g D}{4 v_{0}^{2}}\right] .
$$

- Suppose a particle follows the path $x(t)=x(0)-$ $b_{1} t^{2}+b_{2} t^{3}$, where constants b_{1} and b_{2} are both positive. At what $t>0$ is the particle closest to $x=0$ and what is its position at that time?
Solution: $x_{\min }=x(0)-0.148\left(b_{1}^{3} / b_{2}^{2}\right)$.

