Problems from Ch. 18:

A system gains $10,000 \mathrm{~J}$ of heat and does 5500 J of work, starting at $U_{i}=10^{5} \mathrm{~J}$. What is its final internal energy? Answer: $1.045 \times 10^{5} \mathrm{~J}$.
At a constant 300 K a gas is taken from a volume of $0.01 \mathrm{~m}^{3}$ to $0.1 \mathrm{~m}^{3}$. If the gas has 10^{26} atoms, how much work did the gas do? Answer: $9.5 \times 10^{5} \mathrm{~J}$.
700 J of heat is added to a gas while its temperature is held constant at 400 K . Initially it has pressure $1.6 \times 10^{5} \mathrm{~J} / \mathrm{m}^{3}$ and volume 4 liters. What are its final pressure and volume? Answer: $5.4 \times 10^{4} \mathrm{~J} / \mathrm{m}^{3}$ and 11.9 liters.
A monatomic gas undergoes an adiabatic process, taking it from 400 K to 200 K . If its initial pressure is $1.6 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ and its initial volume is 4 liters, what are the final pressure and volume? Answer: $2.85 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$ and 11.3 liters.
A gas undergoes an isobaric process, during which its temperature changes from 300 to 400 K , at a pressure of 2×10^{5} Pascals. It also expands from 10^{-3} to $2 \times 10^{-3} \mathrm{~m}^{3}$. If the gas is monatomic, and there is one mole of it, what heat was added? Answer: 1447 J.

A gas absorbs 100 J of heat while doing 50 J of work.

Its initial internal energy is 500 J . If its initial temperature is 50 K , what is its final temperature? Answer: 55 K .

A monatomic gas at 10^{5} Pascals expands isobarically from 1 cubic meter to 1.5 cubic meters, beginning at 300 K . What work is done by the gas? What is the final temperature? What is ΔU ? What heat was added to the gas? How many moles of gas were there? Calculate C_{p} from the information supplied. Answers: Work done by gas, $0.5 \times 10^{5} \mathrm{~J}$. Final temperature $450 \mathrm{~K} . \Delta \mathrm{U}=7.5 \times 10^{4} \mathrm{~J} . \mathrm{Q}=1.25 \times 10^{5}$ J. $n=40$ moles. $C_{p}=20.8 \mathrm{~J} /($ mole-K $)$.

