Problems from Ch. 18:

A system gains 10,000 J of heat and does 5500 J of work, starting at $U_i = 10^5$ J. What is its final internal energy? Answer: 1.045×10^5 J.

At a constant 300 K a gas is taken from a volume of 0.01 m^3 to 0.1 m^3 . If the gas has 10^{26} atoms, how much work did the gas do? Answer: 9.5×10^5 J.

700 J of heat is added to a gas while its temperature is held constant at 400 K. Initially it has pressure 1.6×10^5 J/m³ and volume 4 liters. What are its final pressure and volume? Answer: 5.4×10^4 J/m³ and 11.9 liters.

A monatomic gas undergoes an adiabatic process, taking it from 400 K to 200 K. If its initial pressure is 1.6×10^5 N/m² and its initial volume is 4 liters, what are the final pressure and volume? Answer: 2.85×10^4 N/m² and 11.3 liters.

A gas undergoes an isobaric process, during which its temperature changes from 300 to 400 K, at a pressure of 2×10^5 Pascals. It also expands from 10^{-3} to 2×10^{-3} m³. If the gas is monatomic, and there is one mole of it, what heat was added? Answer: 1447 J.

A gas absorbs 100 J of heat while doing 50 J of work.

Its initial internal energy is 500 J. If its initial temperature is 50 K, what is its final temperature? Answer: 55 K.

A monatomic gas at 10^5 Pascals expands isobarically from 1 cubic meter to 1.5 cubic meters, beginning at 300 K. What work is done by the gas? What is the final temperature? What is ΔU ? What heat was added to the gas? How many moles of gas were there? Calculate C_p from the information supplied. Answers: Work done by gas, 0.5×10^5 J. Final temperature 450 K. $\Delta U = 7.5 \times 10^4$ J. Q = 1.25×10^5 J. n = 40 moles. $C_p = 20.8$ J/(mole-K).