Worked Examples, Ch. 16:

(1) Imagine a charge in a uniform electric field \mathbf{E}. Starting from rest, the charge travels through a potential difference of 100 Volts in moving parallel to the field line a distance of 0.01 m . What is the magnitude of the electric field?

Answer: In this course, since we don't know calculus, we can compute work only for constant forces. For example the work done by a constant force \mathbf{F} on a particle that moves a distance Δx along the x axis is $W=F_{x} \Delta x$. If we imagine dividing this expression by some unit charge q, and if we understand what \mathbf{E} and V are, we see that $\Delta V=E \Delta x$. So $E=\Delta V / \Delta x=$ $100 \mathrm{~V} /(0.01 \mathrm{~m})=10,000 \mathrm{~V} / \mathrm{m}$ or N / C.
(2) What is the final speed of an electron that falls from rest across a 1000 V potential difference?
Answer: If we realize $\mathcal{E}=K+U$, and $\Delta \mathcal{E}=0$, then if the final speed is much less than the speed of light, we can write $\Delta K=-\Delta U$ or

$$
(1 / 2) m_{e} v^{2}=e V
$$

So

$$
v=\sqrt{\frac{2 e V}{m_{e}}}
$$

Here $e=1.6 \times 10^{-19} \mathrm{C}$ and the charge on the electron, $q_{e}=-e$. And of course m_{e} is the electron mass, about $9.1 \times 10^{-31} \mathrm{~kg}$. Solving for v by plugging in the numbers we get $v=1.9 \times 10^{7} \mathrm{~m} / \mathrm{s}$. Compare to the speed of light, $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, and we see even a modest voltage gives us a speed that is already 6% of the speed of light!
(3) A conducting sphere of radius R has a charge Q deposited on its surface. If we take the usual definition for the zero of potential for a finite system to be that it goes to zero at infinity, a choice built into the point charge result for V, namely $V(r)=k Q / r$, and if we realize from Gauss's law that the E field of a spherical conductor of radius R with charge Q on its surface is the field of a point charge for any $r>R$, then we can take the V on the surface of a spherical conductor to be $V=k Q / R$. This is a capacitor, since it stores charge. What is the capacitance of this system?

Answer: the definition of capacitance is $C=Q / V=Q / \Delta V$. [The ΔV is used when we have two conductors in parallel, or concentric.] Therefore the capacitance of a charged conducting sphere is

$$
C=Q /(k Q / R)=R / k=4 \pi \epsilon_{o} R .
$$

(4) Two identical capacitors, C_{1} and C_{2}, are put in series, and then put in series with two more of the same capacitors, C_{3} and C_{4}, that are in parallel. What is the equivalent capacitance of the system if each capacitor has a value of $1 \mu \mathrm{~F}$?
Answer: For capacitors in parallel the capacitance adds, while for capacitance in series, the reciprocals add. Therefore $C_{34}=C_{3}+C_{4}$, and $\left(C_{1234}\right)^{-1}=\left(C_{1}\right)^{-1}+\left(C_{2}\right)^{-1}+\left(C_{34}\right)^{-1}$. This can be written as

$$
\left[C_{2} C_{34}+C_{1} C_{34}+C_{1} C_{2}\right] /\left(C_{1} C_{2} C_{34}\right)
$$

Therefore the answer is
$C_{\mathrm{eq}}=\left(C_{1} C_{2}\left(C_{3}+C_{4}\right)\right) /\left(\left(C_{1}+C_{2}\right)\left(C_{3}+C_{4}\right)+C_{1} C_{2}\right)=2 /(4+1)=(2 / 5) \mu \mathrm{F}$.
(5) Capacitances C and $2 C$ are in parallel, and put in series with capacitance $3 C$. If the entire system is put across a potential difference V, how much energy is stored in C ?

Answer: let the voltage across $3 C$ be $V^{\prime \prime}$ and the voltage across the two parallel capacitors be V^{\prime}. Then $V=V^{\prime}+V^{\prime \prime}$. Also $C^{\prime}=C+2 C=3 C$, and

$$
\left(C_{\mathrm{tot}}\right)^{-1}=(3 C)^{-1}+\left(C^{\prime}\right)^{-1}=2 /(3 C) \text { so } C_{\mathrm{tot}}=(3 / 2) C
$$

Since C^{\prime} and $3 C$ are the same, $V^{\prime}=V^{\prime \prime}$. Since $V_{i}=Q_{i} / C_{i}$, the same amount of positive charge is stored on both $3 C$ and C^{\prime}.

Now there are three different ways to write the energy stored in a capacitor.
Here the most useful form looks like $\mathcal{E}=(1 / 2) C \Delta V^{2}$.
The energy stored in C is then $\mathcal{E}_{C}=(1 / 2) C(V / 2)^{2}=C V^{2} / 8$.

We can check this result by calculating the total energy stored, and the energy stored in $2 C$ and in $3 C$. The total energy stored is (using the total capacitance) (3/4)CV . The energy stored in $3 C$ is $\left(3 C V^{2}\right) / 8$. And the energy stored in $2 C$ is $C V^{2} / 4$. This checks because the sum of the energies for each of the three capacitors does equal the total stored energy.
(6) A capacitor of capacitance C is hooked to a battery of voltage V. While the capacitor remains hooked to the battery, a dielectric slab of dielectric constant κ is inserted between the plates of the capacitor. By what factor has the charge on the positive plate changed after the slab is inserted?
Answer: Insertion of the dielectric changes the capacitance from C to κC. The voltage remains constant. So before the dielectric is inserted, $C=Q / V$, and afterward $\kappa C=Q^{\prime} / V$. If we divide the 2 nd equation by the first, we get $\kappa=Q^{\prime} / Q$, so $Q^{\prime}=\kappa Q$. More charge is pulled from the battery after the slab is inserted, to maintain the same potential difference across the capacitor.

