• A thin insulating spherical shell of radius b has a total charge $+Q$ distributed uniformly through it. Inside the shell is a solid conducting sphere of radius a, with no surface charge. Find the electric field everywhere in space.

• A thick conducting spherical shell has inner radius a and outer radius b. A total charge Q is dumped on the outer surface. Now a point charge $-5Q$ is placed at the center of the shell. Find the electric field everywhere, and the charge on both surfaces of the shell.

A long cylindrical pipe made of an insulating material has inner radius a and outer radius b, and a uniform charge density ρ (units C/m3). Find the electric field everywhere in space.

Consider a solid nonconducting sphere of radius R with a uniform charge density ρ throughout, resulting in total charge Q. We know instantly from Gauss’s law that the electric field $\mathbf{E}(r > R)$ is the same as that of a point charge Q. But what is the electric field $\mathbf{E}(r < R)$?
Solutions:

Question 1: Imagine a spherical surface with \(r < a \). It encloses no net charge so \(E(r < a) \) must be zero. [There is no net charge inside a solid conductor.] Now imagine a spherical surface with \(a < r < b \). There is no charge on the surface of the conductor, and the space between the conductor and shell is empty, so again no net charge is enclosed, and \(E(b > r > a) \) must be zero. Now imagine a spherical surface with \(r > b \). There is a net charge \(+Q \) on the insulating shell, so that is the total enclosed charge, and the electric field for \(r > b \) is the same as the electric field of a point charge of \(+Q \).

Question 2: Imagine a spherical surface with \(r < a \). It encloses a net charge, \(-5Q\). So the field is the field of a point charge of that amount. Now imagine a spherical surface with \(a < r < b \). There cannot be an electric field inside the conductor so there must be a charge \(+5Q\) induced on the inner surface of the conductor, to generate all electric field lines that go inward to the central point charge. \(E(a < r < b) = 0 \). But the conductor has no net charge, so in addition to the charge \(+Q\) dumped on the outer surface, there is a charge \(-5Q\) left behind when charge is pulled to the inner surface. So the net charge on the outer surface is \(-4Q\). Therefore the field for \(E(r > b) \) is the field of a point charge of \(-4Q\).

Question 3: For the long cylindrical pipe, a cylindrical surface inside the hollow, with \(r < a \), encloses no charge, so the electric field is zero for \(r < a \). Inside the material of the pipe itself, we choose a surface with radius \(r \) and arbitrary length \(\ell \). By symmetry the \(E \) field is perpendicular to the sides of the cylinder, and parallel to the end “lids.” Thus if \(\rho \) is the charge per unit volume, Gauss’s law gives

\[
E2\pi r \ell = \left(\rho/\varepsilon_0 \right) [\pi r^2 \ell - \pi a^2 \ell] \quad \text{so} \quad E = \rho[r^2 - a^2]/(2\varepsilon_0 r).
\]

The same argument for \(r > b \) gives

\[
E = \rho[b^2 - a^2]/(2\varepsilon_0 r).
\]

Question 4: For a solid, nonconducting sphere of radius \(R \), with a uniformly distributed charge \(Q = (4/3)\pi R^3 \rho \), if we take a spherical surface of \(r < R \)
the enclosed charge is \((r/R)^3 Q = (4/3)\pi r^3 \rho\). This tells us using the Gauss law that inside the sphere,

\[E 4\pi r^2 = (4/3)\pi r^3 \rho/\epsilon_0 \text{ so } E = (r\rho)/(3\epsilon_0). \]

We could write this in terms of \(Q\), and in vector notation, as

\[\mathbf{E}(r < R) = (rQ)/(4\pi \epsilon_0 R^3). \]

Results such as this are easily checked for algebraic errors by noting that the expression for \(E(r < R)\) must give the same result as the expression for \(E(r > R)\) on the surface \(r = R\). [Remember \(\mathbf{\hat{r}} = r/r\).]