Rigid Body Rotations:

\[\omega = \frac{d\theta}{dt}, \quad \alpha = \frac{d\omega}{dt}. \]

Connection to linear quantities: \(v = r\omega \), \(a_t = r\alpha \), and \(a_r = r\omega^2 \).

Both \(\vec{\omega} \) and \(\vec{\alpha} \) are vectors, with direction defined by a right-hand rule based on sense of rotation, or sense of change in \(\vec{\omega} \).

Rigid Rotor Kinematics for constant \(\alpha \):

\[\theta = \theta(0) + \omega(0)t + \frac{1}{2} \alpha t^2. \]

\[\omega = \omega(0) + \alpha t. \]

\[\omega^2 = \omega(0)^2 + 2\alpha(\theta - \theta(0)). \]

Vector Cross Product: \(\mathbf{A} \times \mathbf{B} = \mathbf{C} \).

The vector \(\mathbf{C} \) is perpendicular to the plane containing \(\mathbf{A} \) and \(\mathbf{B} \), and has magnitude \(C = AB \sin \theta_{AB} \).

Torque:

\[\vec{\tau} = \mathbf{r} \times \mathbf{F}. \]
The big picture!

\[F_I = F \sin \theta \]

\[\tau = r F \sin \theta \]

\[\tau = r F_I \]
The magnitude of the torque can be expressed three different ways:

\[\tau = rF \sin \theta = r_{\perp}F = rF_{\perp}. \]

Rotational Inertia:

\[I = \sum_{i} m_{i}r_{i}^{2} \]

\[I = \int r^{2}dm. \]

Parallel Axis Theorem:

\[I = I_{\text{cm}} + Md^{2}. \]

Second Law for Torques!

\[\sum_{i} \vec{\tau}_{i} = I \vec{\alpha}. \]

Rotational Kinetic Energy:

\[K_{r} = \frac{1}{2}I\omega^{2}. \]
Rolling Motion:

\[v_{cm} = R\omega. \]

Conservation of Energy:

\[E = K_{cm} + K_r + U_{cm}. \]