Rigid Body Rotations:

$$\omega = \frac{d\theta}{dt}, \ \alpha = \frac{d\omega}{dt}.$$

Connection to linear quantities: $v = r\omega$, $a_t = r\alpha$, and $a_r = r\omega^2$.

Both $\vec{\omega}$ and $\vec{\alpha}$ are vectors, with direction defined by a right-hand rule based on sense of rotation, or sense of change in $\vec{\omega}$.

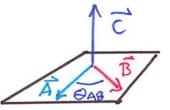
Rigid Rotor Kinematics for constant α :

$$\theta = \theta(0) + \omega(0)t + \frac{1}{2}\alpha t^{2}.$$

$$\omega = \omega(0) + \alpha t.$$

$$\omega^{2} = \omega(0)^{2} + 2\alpha(\theta - \theta(0)).$$

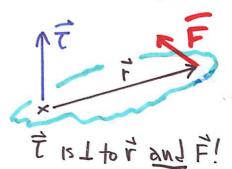
Vector Cross Product: $\mathbf{A} \times \mathbf{B} = \mathbf{C}$.



The vector \mathbf{C} is perpendicular to the plane containing \mathbf{A} and \mathbf{B} , and has magnitude $C = AB \sin \theta_{AB}$.

Torque:

$$\vec{ au} = \mathbf{r} \times \mathbf{F}.$$



The big picture! θ F_ = FSINO T= rFSINO I = LZMB $T = I_{\perp}F$ $T = rF_{\perp}$ PIVOT

The magnitude of the torque can be expressed three different ways:

$$\tau = rF\sin\theta = r_{\perp}F = rF_{\perp}.$$

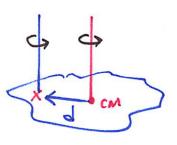
Rotational Inertia:

$$I = \sum_{i} m_i r_i^2$$

$$I = \int r^2 dm.$$

Parallel Axis Theorem:

$$I = I_{\rm cm} + Md^2.$$



Second Law for Torques!

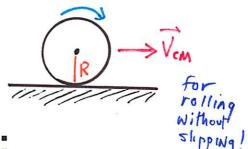
$$\sum_{i} \vec{\tau}_{i} = I\vec{\alpha}.$$

Rotational Kinetic Energy:

$$K_r = \frac{1}{2}I\omega^2.$$

Rolling Motion:

$$v_{\rm cm} = R\omega$$
.



Conservation of Energy:

$$E = K_{\rm cm} + K_r + U_{\rm cm}.$$

