ISOSPIN:

We can define a generator of rotations in abstract
space such that

T2|T7 T3> — T(T + 1)|T7 T3>7

T3|T, T3) = T3|T, Ts),

and

A ~ ”~

15,15 = T,

By analogy with spin, T = 0, 1/2, 1, 3/2, etc. and
of course -1, -T +1,...<T5< ... T—-1,T.

—

Note that [Hs,T| = 0, since the strong interaction

—

does not couple to charge. However, clearly [Hem, T
is not zero, since charge depends on 75. Thus the
electromagnetic interaction splits the (27'4+1) degen-
eracy that would otherwise exist, and we see isospin
multiplets.

Example: the nucleon: |p) has T5 = +1/2, while |n)
has T3 = —1/2

Other examples of multiplets: 7+, 7°, and 7=, T =
1. ATt AT, AY%and A=, T = 3/2.

We can generalize the relation between charge and
hypercharge to be:

Q=e(T3+Y/2) =e(T3+(1/2)(A+S+C+T+ B)).



PARITY:

There are two kinds of vectors in physics, polar vec-
tors, and axial vectors. If we define P so that Pr =
—rP, etc., then clearly PL = LP.

If PlY) o< |¥), then the state is an eigenstate of
parity. Define the eigenvalue as np. Then clearly
n% = 1, so the only possible eigenvalues are n, = £1.

You remember from 373 that P|¢m) = (—1)*|¢m).

For a reaction a+b — c+d, we can define the overall
parity in each partial wave as

/

Pi =np(a)np(b)(=1)*, Py =np(c)np(d)(-1)".

The intrinsic parity of a particle can be specified by
arbitrarily defining the parity eigenvalues of proton
and neutron as +1 and applying conservation of par-
ity to various reactions that in fact conserve parity.

Notation for bound state: J™, total angular momen-
tum and parity.

Helicity: n =235/

No particle with mass can be a helicity eigenstate.
Also Ph = —hP. Strong and electromagnetic pro-
cesses conserve parity to a very good approximation,
but weak processes violate it.



Charge Conjugation:

If a is any additive quantum number, C|a) = |—a). In
general eigenstates of C do not exist. The exception
occurs when all ¢ = 0. Then C|0) = 7.|0) and the
“charge parity” n, = x1.

Weak Hamiltonians do not appear to commute with
C, but strong and electromagnetic Hamiltonians do,
to a very good approximation. The problem with
weak interactions is that neutrinos appear to be he-
licity eigenstates.

Time Reversal:

In quantum physics you might think that all time
reversal 7 would do would be to replace t by —ft,
but this can’t be, because

0
H=1h—.
"ot
Therefore the 7 operation has to take the complex
conjugate as well as replacing ¢ by —t.

CPT symmetry:

All known processes in nature have Hamiltonians
that commute with the combined operation CP7.



However processes have been discovered that have
Hamiltonians that do not commute with CP, which
means they must also fail to commute with 7 in a
way that restores CP7 symmetry. Those processes
are vitally important in understanding how matter
came into existence in the early universe, since it is
such processes that treat particles and antiparticles
differently and result in a universe consisting entirely
of matter, with no antimatter present primordially.



Discrete Symmetries:

Parity : PU¥(r,t) = ¥(—r,1t).

Charge Conjugation : C|A) = | — A)

where A is the set of all additive quantum numbers
for the system.

Time Reversal : 7¥(r,t) = U*(r, —1).

It can be shown with essentially no limitations that
[PCT, H| =0 for any conceivable process in nature.

It came as a big shock in 1957 when it was discov-
ered that P is not a symmetry for weak interactions.
However, PC was “of course” a good symmetry, even
for weak processes.

It came as an even bigger shock in 1964 when it was
found that for some processes, even PC was not a
good symmetry!

This might have been expected, since clearly we would
not have a universe consisting of matter, unless there
were processes in the early universe for which 7 was
not a symmetry. About 1 in every 10° processes in
the early universe would have had to produce more
particles than antiparticles.



To Summarize:

Parity:
PrP~1 = —r.
PpP~! = —p.

PIP~! =1J.

Charge Conjugation:

CrC~ ! =r.
CpC~! =p.
cjc~t =1.

Cladditive q.n.]JC™! = —additive q.n..

Time Reversal:

Tr7T ! =r.
Tp’]'_1 = —p.
T7IT 1 =-17.
TtT ! = —¢.

It is vital to remember that 7 also complex-conjugates!



tin]L_e Reversal on a Free Particle
ate:

(rt|pE) = exp[+i(p - r — Et)]/h.

Remember p and E are eigenvalues, constants, not
operators.

Remember that 7 does two things: changes t — —t,
and complex conjugates.

Therefore 7 operating on (rt|pE) gives

exp[—i(p - r + Et)]/h.

We can re-write this as
exp[+i(—p - r — Et)]/A,

which means the free particle state is converted into
a state with the opposite direction of momentum
eigenvalue, and nothing else changes.

Thus this behavior is like the effect of classical time
reversal on the motion of a free particle.



Neutral K mesons are pseudoscalars, J™ ={~.

CIK® >= —|K° >, C|K® >= —|K" > .
P|K? >= —|K° >, P|K° >= —|K° >, by convention
Thus CP|K°® >= +|K° >, CP|K® >= +|K" > .

Thus we form eigenstates of CP as follows:

1 _
K9 >= —[|K°> +|K° >],

1 _
KY>= —[IK°> —|K" >].

These are the CP — £1 eigenstates, respectively.

However, experimentally the states seen are |Kg > and |K >.
The S state decays to two pions (CP — +1) with a lifetime
of about 10719 sec, while the L state decays to three pions
(CP — —1) with a lifetime of about 0.5 x10~7 sec.

But if one looks closely one sees that the L state can decay to
2 pions with a probability of about 1073.

Thus the observed states must contain small admixtures of the
opposite C'P eigenstate. Suppose

|Ks >= (1 + |e]*)"Y2[|K? > —¢| K3 >],
KL >= (1+ [¢[*)"12[e| K? > +| KT >].

Experiment confirmed that in fact the observed decays were
due to this kind of mixing, with the individual decays con-
serving CP. Thus these were called “indirect CPP-nonconserving
decays.” Experimentally €| is about 2.2 x1073.



Suppose we start with a state at ¢ = 0 that looks

like: y
Kl>s= —_[IKe> + K7 >].
| \/-2_“ S | L ]

These states have a different time dependence, so at
t > 0 we would have

Z5las(tIKs > +ar(®)]Ks >]

If we suppress ¢ and h to make for less typing, since
these are decaying states, we can write the time-
dependent terms as

aq = exp[—imqt] exp[—Tat/2],

where of course the average lifetime 7, = 1/T.
If we define

A(t) = (1/2)[as(t)+ar(t)], A(t) = (1/2)[as(t)—ar(t)],
then we can write
A@)|K® > +A(t)|K° > .

The result is a damped oscillation, characteristic of
mixing in quantum physics. [A similar but undamped .
oscillation occurs between the three neutrino flavors,
as we will see later.]



|A]* = (1/4) [exp(~T'st) + exp(~T't)
+2exp(—[T's + I'L]t/2) cos(Amt)].

[A]* = (1/4)[exp(—Tst) + exp(=L't)
—2exp(—[Cs + I'L]t/2) cos(Amt)].

Here Am = |mg — mp]|.



Table 1. Transformation properties of electric field E,
magnetic field B, charge g, velocity v and force F under
charge conjugation (C), parity (P) and time reversal (T).

C p T
E —E —E E
B — B B —B
q —q q q
v v —~- -0
F F —F F

f/ Ts

Fig. 9.13 Predicted variation with time of the intensities I(K®) (solid line) and I(K°)
(dashed line) for an initial K° beam. The curves are calculated using (9.46) for
Am - 1 = 0.5, where Am is the mass difference (9.47) and 1 is the K-short lifetime.



