ISOSPIN:

We can define a generator of rotations in abstract space such that

$$\hat{T}^{2}|T,T_{3}\rangle = T(T+1)|T,T_{3}\rangle,$$

$$\hat{T}_{3}|T,T_{3}\rangle = T_{3}|T,T_{3}\rangle,$$

and

$$[\hat{T}_i, \hat{T}_j] = i\hat{T}_k.$$

By analogy with spin, T = 0, 1/2, 1, 3/2, etc. and of course $-T, -T + 1, ... < T_3 < ..., T - 1, T$.

Note that $[H_s, \vec{T}] = 0$, since the strong interaction does not couple to charge. However, clearly $[H_{em}, \vec{T}]$ is not zero, since charge depends on T_3 . Thus the electromagnetic interaction splits the (2T+1) degeneracy that would otherwise exist, and we see isospin multiplets.

Example: the nucleon: $|p\rangle$ has $T_3=+1/2$, while $|n\rangle$ has $T_3=-1/2$.

Other examples of multiplets: π^+ , π^0 , and π^- , T = 1. Δ^{++} , Δ^+ , Δ^0 and Δ^- , T = 3/2.

We can generalize the relation between charge and hypercharge to be:

$$Q = e(T_3 + Y/2) = e(T_3 + (1/2)(A + S + C + T + B)).$$

PARITY:

There are two kinds of vectors in physics, polar vectors, and axial vectors. If we define \mathcal{P} so that $\mathcal{P}\mathbf{r} = -\mathbf{r}\mathcal{P}$, etc., then clearly $\mathcal{P}\mathbf{L} = \mathbf{L}\mathcal{P}$.

If $\mathcal{P}|\psi\rangle \propto |\psi\rangle$, then the state is an eigenstate of parity. Define the eigenvalue as η_P . Then clearly $\eta_P^2 = 1$, so the only possible eigenvalues are $\eta_P = \pm 1$.

You remember from 373 that $\mathcal{P}|\ell m\rangle = (-1)^{\ell}|\ell m\rangle$.

For a reaction $a+b \rightarrow c+d$, we can define the overall parity in each partial wave as

$$\mathcal{P}_i = \eta_P(a)\eta_P(b)(-1)^{\ell}, \ \mathcal{P}_f = \eta_P(c)\eta_P(d)(-1)^{\ell'}.$$

The intrinsic parity of a particle can be specified by arbitrarily defining the parity eigenvalues of proton and neutron as +1 and applying conservation of parity to various reactions that in fact conserve parity.

Notation for bound state: J^{π} , total angular momentum and parity.

Helicity:
$$h = 2\mathbf{J} \cdot \widehat{\mathbf{p}}/\hbar$$
.

No particle with mass can be a helicity eigenstate. Also $\mathcal{P}h = -h\mathcal{P}$. Strong and electromagnetic processes conserve parity to a very good approximation, but weak processes violate it.

Charge Conjugation:

If a is any additive quantum number, $C|a\rangle = |-a\rangle$. In general eigenstates of C do not exist. The exception occurs when all a = 0. Then $C|0\rangle = \eta_c|0\rangle$ and the "charge parity" $\eta_c = \pm 1$.

Weak Hamiltonians do not appear to commute with C, but strong and electromagnetic Hamiltonians do, to a very good approximation. The problem with weak interactions is that neutrinos appear to be helicity eigenstates.

Time Reversal:

In quantum physics you might think that all time reversal \mathcal{T} would do would be to replace t by -t, but this can't be, because

$$H = i\hbar \frac{\partial}{\partial t}.$$

Therefore the \mathcal{T} operation has to take the complex conjugate as well as replacing t by -t.

CPT symmetry:

All known processes in nature have Hamiltonians that commute with the combined operation \mathcal{CPT} .

However processes have been discovered that have Hamiltonians that do not commute with \mathcal{CP} , which means they must also fail to commute with \mathcal{T} in a way that restores \mathcal{CPT} symmetry. Those processes are vitally important in understanding how matter came into existence in the early universe, since it is such processes that treat particles and antiparticles differently and result in a universe consisting entirely of matter, with no antimatter present primordially.

Discrete Symmetries:

Parity: $\mathcal{P}\Psi(\mathbf{r},t) = \Psi(-\mathbf{r},t)$.

Charge Conjugation :
$$C|A\rangle = |-A\rangle$$

where \mathcal{A} is the set of all additive quantum numbers for the system.

Time Reversal:
$$\mathcal{T}\Psi(\mathbf{r},t) = \Psi^*(\mathbf{r},-t)$$
.

It can be shown with essentially no limitations that $[\mathcal{PCT}, H] = 0$ for any conceivable process in nature.

It came as a big shock in 1957 when it was discovered that \mathcal{P} is not a symmetry for weak interactions. However, \mathcal{PC} was "of course" a good symmetry, even for weak processes.

It came as an even bigger shock in 1964 when it was found that for some processes, even \mathcal{PC} was not a good symmetry!

This might have been expected, since clearly we would not have a universe consisting of matter, unless there were processes in the early universe for which \mathcal{T} was not a symmetry. About 1 in every 10^9 processes in the early universe would have had to produce more particles than antiparticles.

To Summarize: Parity:

$$\mathcal{P}\mathbf{r}\mathcal{P}^{-1} = -\mathbf{r}.$$

$$\mathcal{P}\mathbf{p}\mathcal{P}^{-1} = -\mathbf{p}.$$

$$\mathcal{P}\mathbf{J}\mathcal{P}^{-1}=\mathbf{J}.$$

Charge Conjugation:

$$C\mathbf{r}C^{-1} = \mathbf{r}.$$

$$CpC^{-1} = p.$$

$$CJC^{-1} = J.$$

 $C[additive q.n.]C^{-1} = -additive q.n..$

Time Reversal:

$$T\mathbf{r}T^{-1} = \mathbf{r}$$
.

$$\mathcal{T}\mathbf{p}\mathcal{T}^{-1} = -\mathbf{p}.$$

$$T\mathbf{J}T^{-1} = -\mathbf{J}.$$

$$\mathcal{T}t\mathcal{T}^{-1} = -t.$$

It is vital to remember that \mathcal{T} also complex-conjugates!

Time Reversal on a Free Particle State:

$$\langle \mathbf{r}t|\mathbf{p}E\rangle = \exp[+i(\mathbf{p}\cdot\mathbf{r} - Et)]/\hbar.$$

Remember \mathbf{p} and E are eigenvalues, constants, not operators.

Remember that \mathcal{T} does two things: changes $t \to -t$, and complex conjugates.

Therefore \mathcal{T} operating on $\langle \mathbf{r}t|\mathbf{p}E\rangle$ gives

$$\exp[-i(\mathbf{p}\cdot\mathbf{r}+Et)]/\hbar.$$

We can re-write this as

$$\exp[+i(-\mathbf{p}\cdot\mathbf{r}-Et)]/\hbar,$$

which means the free particle state is converted into a state with the opposite direction of momentum eigenvalue, and nothing else changes.

Thus this behavior is like the effect of classical time reversal on the motion of a free particle. Neutral K mesons are pseudoscalars, $J^{\pi} = \mathbf{0}^{-}$.

$$\begin{split} \mathcal{C}|K^0> &= -|\bar{K}^0>, \; \mathcal{C}|\bar{K}^0> = -|K^0>.\\ \mathcal{P}|K^0> &= -|K^0>, \; \mathcal{P}|\bar{K}^0> = -|\bar{K}^0>, \; \text{by convention}\\ \text{Thus } \mathcal{CP}|K^0> &= +|\bar{K}^0>, \; \mathcal{CP}|\bar{K}^0> = +|K^0>. \end{split}$$

Thus we form eigenstates of \mathcal{CP} as follows:

$$|K_1^0> = \frac{1}{\sqrt{2}}[|K^0> + |\bar{K}^0>],$$

 $|K_2^0> = \frac{1}{\sqrt{2}}[|K^0> - |\bar{K}^0>].$

These are the $\mathcal{CP} \to \pm 1$ eigenstates, respectively.

However, experimentally the states seen are $|K_S\rangle$ and $|K_L\rangle$. The S state decays to two pions $(\mathcal{CP} \to +1)$ with a lifetime of about 10^{-10} sec, while the L state decays to three pions $(\mathcal{CP} \to -1)$ with a lifetime of about 0.5×10^{-7} sec.

But if one looks closely one sees that the L state can decay to 2 pions with a probability of about 10^{-3} .

Thus the observed states must contain small admixtures of the opposite \mathcal{CP} eigenstate. Suppose

$$|K_S> = (1 + |\epsilon|^2)^{-1/2} [|K_1^0> -\epsilon|K_2^0>],$$

 $|K_L> = (1 + |\epsilon|^2)^{-1/2} [\epsilon|K_1^0> + |K_2^0>].$

Experiment confirmed that in fact the observed decays were due to this kind of mixing, with the individual decays conserving \mathcal{CP} . Thus these were called "indirect \mathcal{CP} -nonconserving decays." Experimentally $|\epsilon|$ is about 2.2×10^{-3} .

Suppose we start with a state at t=0 that looks like:

$$|K^0> = \frac{1}{\sqrt{2}}[|K_S> + |K_L>].$$

These states have a different time dependence, so at t > 0 we would have

$$\frac{1}{\sqrt{2}} \left[a_S(t) | K_S > + a_L(t) | K_L > \right].$$

If we suppress c and \hbar to make for less typing, since these are decaying states, we can write the timedependent terms as

$$a_{\alpha} = \exp[-im_{\alpha}t] \exp[-\Gamma_{\alpha}t/2],$$

where of course the average lifetime $\tau_{\alpha} = 1/\Gamma_{\alpha}$. If we define

$$A(t) = (1/2)[a_S(t) + a_L(t)], \ \bar{A}(t) = (1/2)[a_S(t) - a_L(t)],$$

then we can write

$$A(t)|K^0>+\bar{A}(t)|\bar{K}^0>.$$

The result is a damped oscillation, characteristic of mixing in quantum physics. [A similar but undamped oscillation occurs between the three neutrino flavors, as we will see later.]

$$|A|^2 = (1/4) \left[\exp(-\Gamma_S t) + \exp(-\Gamma_L t) + 2 \exp(-[\Gamma_S + \Gamma_L]t/2) \cos(\Delta m t) \right].$$

$$|\bar{A}|^2 = (1/4) \left[\exp(-\Gamma_S t) + \exp(-\Gamma_L t) - 2 \exp(-[\Gamma_S + \Gamma_L]t/2) \cos(\Delta m t) \right].$$

Here $\Delta m = |m_S - m_L|$.

Table 1. Transformation properties of electric field E, magnetic field B, charge q, velocity v and force F under charge conjugation (C), parity (P) and time reversal (T).

	С	P	T
E	— Е	– Е	Е
B	— В	В	- В
9	– q	q	q
V	v	- v	- v
F	F	- F	F

Fig. 9.13 Predicted variation with time of the intensities $I(K^0)$ (solid line) and $I(\overline{K}^0)$ (dashed line) for an initial K^0 beam. The curves are calculated using (9.46) for $\Delta m \cdot \tau_S = 0.5$, where Δm is the mass difference (9.47) and τ_S is the K-short lifetime.