Suppose we have the usual free-particle state, satis-
fying

ih%hﬁ} = H|y), where H = (1/2m)p?.

Obviously if we make a local gauge transformation,
0" = expiQe(r,t)|y), we get derivatives of the ar-
bitrary function €(r,t) and so |¢') does not satisfy
the Schrodinger equation.

However, suppose the system were coupled to a vec-
tor field which is gauge invariant!

H = (1/2m)(p — (¢/c)A)* + qAo.

The gauge freedom provided by the (Ag, A) field al-
lows us to cancel the unwanted terms and recover
the same equation, satisfied by both |¥') and |¥).

AL = Ag —h%, A’ = A + heVe.

Note we could define A’ = A* — heVHe, where



We can even include the gauge field automatically by
defining a covariant derivative, like D, = (Dg, D),
where
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To stress the point: requiring local gauge invari-
ance automatically generates a gauge-invariant field,

and thus automatically includes interactions with
the field, such as qAgp and j - A.

According to Maxwell’'s Equations
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c? atzo — V%4 = pg = (¥lql¥).

Z o2 V°A; = ~ = (V|qus/cly).

Gauge freedom allows us to choose, for example, the
Lorentz Gauge:
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+V-A=0.

A simple covariant form is obtained as OA* = j#/c,

where 0 = V , V¥,



For a massive boson we would have an equation look-
ing like the Klein-Gordon equation,
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The mass term destroys gauge invariance! So at first
it looked as if it would be impossible to have a gauge
theory of weak interactions.

Aharonov-Bohm Effect

Imagine a very long solenoid, where B is uniform in-
side and basically zero outside. In this case the vec-
tor potential A circles the solenoid outside, forming
closed loops. That is B =V x A =0, but A is not
ZEro.

Write the Schrodinger equation for the outside of the
solenoid:

[(1/2m)(? —qA/c)* + V]?,b = zh%—f

Make a transformation ¥ = exp(ig)y’, where

o) = (a/he) [ CA() - dr



where we are integrating along a path.
Now look at V) and use the fact that Vg = qA/c.

The result (see text) is that

1A%

(55— aA/e)*) = —h" exp(ig) V¥,

so if we cancel expig in every term we get

—h2 X 8¢/
v — V) + V' —-zha

What this means is that any solution for no vector
field A can be converted into a solution for a vector
field with V x A = 0 simply by multiplying the free
particle solution by

exp ig = exp|(ig/hc) / A(r) - di)

Therefore if we integrate along a circular path around
the solenoid, everywhere tangent to A, and we have
split a beam of particles into two beams that go
around the opposite halves of the circular path, on
one side dr is parallel to A, and on the other side it
is antiparallel, so if we define ® as the usual mag-
netic flux through our loop, we get g = +(q®)/(2kc)



and the total phase difference between the two paths
is (q®)/(hc). This is easily detected by merging the
two beams again and examining their interference
with one another.

Yang-Mills Fields:

Suppose we had a gauge-invariant vector field con-
sisting of two or more noncommuting massless vector
fields. There would need to be some additive quan-
tum number to distinguish the bosons, and the in-
evitable result would be that the fields couple to one
another! These are called non-Abelian fields, and
the real problem is that in such a case, free fields
do not exist, because the fields themselves interact.
The work of Yang and Mills on such fields had been
largely forgotten when people started to work on a
gauge theory of the strong interaction. The bosons
of this field are massless, but they carry the source of

the field, color. So the strong field is very precisely
a Yang-Mills field!



Higgs Mechanism:

Recall OA# = j#. This looks like the KG equation
but with a source term. If we remove the source,
the obvious solution is no field, A* = 0. [Of course
the electromagnetic field has a radiation component,
which seems to propagate indefinitely through empty
space, but it had a source, accelerating charge, at
some point in space.]

Now in general consider some field that satisfies Qi =
— K. If K = (mc/h)?, this is the KG equation for a
spinless particle with mass m, and there is no source
term.

Now let’s suppose we have two fields, %1, ¥2. And
suppose they interact. Then we could, for example,
work in terms of two coupled equations that look like

1 = —[K1 + kiop3)ihn, Qg = —[Kaz + ko197 s,
In general for many interacting fields, we would have

v = —[K; + Z kij 3]s,
J

An important thing to notice is that the interactions
are contributing to what could be a mass factor.



Step back to just one field, 11, no interactions. If
K; = 0 the obvious solution is 1; = 0. Even if we
have K; > 0, there is no source term, so the simplest
solution is still ¥, = 0.

But suppose the field can interact with itself. Then
we could get an equation that looks like

Oy = —[K1 + klﬂﬁ%]%»

There are now three solutions that are consistent
with Oy; = 0. We could have 9 = 0 to begin with,
OR we could have K7 + knw% = 0.

Thus we get two NON-ZERO solutions,

Y1 = £/ —K1/k11.

Now remember the usual way to deduce a function ¢
for the potential energy, given information like this.

oo

—5—&; = —[K; + ku?’b%]?ﬁb

The result is

B(r) = 3Kl + ghuvi.



To break symmetry, suppose K; < 0. Now there are
3 extrema, in the famous “Mexican Hat Potential.”

Since 1) is in general complex, what we have drawn
is just a cut across the actual three-dimensional func-

tion.
o(%)

-\|=k 0 4]k
S IS, ¢



We only find two stable solutions. The fact that this
self-coupled field has two excitations means that if
we couple it to other fields, for example

Qv; = —[K; — kj1 (K1/k11)]vj,

then even when K; = 0, the field j has a mass term.

O = k1 [K1/kulv;, K1 <O.

Therefore if we compare to the usual KG equation,

mj; = (h/c)\/kjl[_Kl/k11]~

The Standard Model of particle physics describes
all pointlike fundamental particles, whether leptons,
quarks or field bosons, as massless in the sense that
K; = kj; = 0. These particles gain a mass by cou-
pling to a unique, self-coupling field, the Higgs field.
This field is governed by an equation with K; < 0
and k1; > 0. It thus has an effective mass even in 1ts
sourceless, steady state. Does the Higgs boson get
its own mass from the Higgs field? Not necessarily,
because the Higgs field itself could have a non-zero
K. Also there may well be more than one Higgs



field. Some of the simplest ways to go beyond the
standard model have up to 5 Higgs fields!

It is important to stress again that the majority of
the mass in the universe does not come from the
Higgs field interactions. The masses of baryons and
mesons do NOT come mainly from the Higgs inter-
action. Consider a particle made of constituents 1.
If this particle is in free space, and not interacting
with external fields, classical relativity tells us

Mc? = ZKZ +ZV;‘]‘ —|—Zmicz.

In the case of baryons and mesons most of the mass
comes from the interaction terms, in other words,
from the fields that bind the system together.

The Higgs field is the only example of a quantum
scalar field known in nature, and thus its boson is

the only example of a fundamental particle that 1s a
0" boson.



Spontaneous Symmetry Breaking
and Goldstone Bosons:

Goldstone’s theorem indicates that if a continuous
symmetry exists but is spontaneously broken in ac-
tual physical systems, then a massless scalar particle
(Nambu-Goldstone boson) appears for each genera-
tor of the broken symmetry.

In a system with gauge symmetry, whose field bosons
are massless 1~ bosons with two polarization states,
the symmetry breaking due to interaction with the
Higgs field results in the Nambu-Goldstone bosons
being eaten by the gauge bosons as they gain mass,
to provide the extra spin substate, now m, = 1,0,
of the massive vector particles.

The “Mexican Hat” potential was originally suggested *
by Goldstone to illustrate this. Such a potential has
an infinite number of vacuum states ¢ = Aexp(i6),
for all real 8 from zero to 2. Once the system occu-
pies a particular state, a specific 8, we can no longer
see the original symmetry, but all values of 8 cor-
respond to the same energy. The massless mode is
the circular mode that stays at the bottom of the
trough. Excitations of the field correspond to oscil-
lations back-and-forth across the circular path.



