Ultra-Relativistic Nuclear Collisons:

The goal of experiments has generally been to reach
the region of the phase transition to a quark-gluon
plasma, which should occur at about

T = 300 MeV /k = 3.3 x 10'? K.

The corresponding energy density is about 10 GeV
per cubic fermi, and the pressure is 0.5 x103! bar.
So far experiments have been carried out at RHIC in
the US and at the LHC in Europe. A new accelerator
is now under construction in Germany, called FAIR.
The reason for the intensive effort is that this is the
only way anyone has thought of to probe the nuclear
equation of state at extreme temperatures. [Nuclei
themselves are of course close to T' = 0.]

Almost all research of this kind began in Germany
and most senior researchers in the field were edu-
cated in Germany. The theoretical description of
the reaction events for obvious reasons depends on
relativistic thermodynamics.

The usual theoretical approach to the nuclear equa-
tion of state is lattice gauge QCD. In any event, one
begins with the QCD Lagrangian, translates it into
a Hamiltonian, and constructs the usual thermody-



namic partition function,
Z(T,V) = Trlexp(—H /T)].

The energy density and pressure are then computed
in the usual way, as
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Early calculations (circa 1985) predicted the transi-
tion temperature to be about 175 to 200 MeV, corre-
sponding to an energy density of about 2.5 GeV per
cubic fermi. There may be a critical point around
155 MeV, but perhaps at higher density than RHIC
and the LHC can directly reach. RHIC and the LHC
have easily reached temperatures of 300 to 400 MeV,
but more density is the goal in future work.

e =[T*/V](0Z/dT)v, p=

Before experiments began, there were several (unfor-
tunately very indirect) experimental indicators sug-
gested for a quark-gluon plasma, and in early ex-
periments up to 2000, mainly done at RHIC, every
single one of these indicators was unambiguously ob-
served. Alas, and alack, when energies were dropped
BELOW the reliably predicted position of the phase
transition, the same “indicators” were still observed!
This has left the field in turmoil, because it is no



longer clear how to identify the quark-gluon phase
in experiments. There is no question that the proper
degree of quark deconfinement has been achieved,
even in early studies, but at present no one has a
good suggestion as to how to verify this experimen-
tally!

A new proton-antiproton collider, FAIR, is currently
under construction in Germany, which may be able
to probe regions of the equation of state that are
inaccessible to heavy-ion collision experiments. In
any event, comparisons of p + p, p + nucleus, and
nucleus + nucleus collisions have already been in-
valuable in understanding what’s been found over
the last 30 years.
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Figure 15.10. The energy density (g/T*) of strongly interacting matter as a function of the
temperature. We also compare the horizontal lines for the ideal quark-gluon plasma (dashed line)

and for the ideal pion gas (dot-dashed line) (taken from Celik et al 1985).
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Fig. 19.8. Temperature of the
fragments in 2 peripheral collision
of two 97Au nuclei as a function of
the excitation energy per nucleon
(from [P095)). The behaviour of
the temperature can be under-
stood as a phase transition in nu-
clear matter.



UNSTABLE NUCLEI:

It’s a feature of quantum physics that transition prob-
abilities are time-independent, and in such a case

N(t) = N(0)exp(—t/7) = N(0) [%] e

Various processes are possible by which unstable nu-
clei can transform to nuclei of greater stability:

(1) Alpha decay— a *He cluster penetrates the Coulomb
barrier.

(2) Beta-minus decay— a neutron converts into a
proton, electron and anti-electron neutrino.

(3) Beta-plus decay— a proton converts into a neu-
tron, positron and electron neutrino.

(4) Electron capture— a K electron is absorbed by a
proton, yielding a neutron and an electron neutrino.

Processes (3) and (4) are always competitive except
in very light nuclei.

(5) Spontaneous fission— in very heavy nuclei; be-
cause of the huge Coulomb barrier this process is not
always probable.

(6) De-excitation of excited nuclear states, after de-
cays (1) through (5):
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Vibrational Levels in Nuclei

In mid-shell, spontaneous symmetry breaking pro-
duces permanent nuclear deformations. Otherwise,
even-even nuclei have spherical symmetry, and their
collective modes are vibrational.

Let’s write

R(9,6) = Ro[1+ 3 on, Y5, (09)].

AL

e A = 0 would be a density oscillation (“breathing”)
but nuclei are essentially incompressible.

e A\ = 1 would be a translation (equivalent to a
Goldstone Boson), but one does see combinations
of translations at high excitation (Giant Dipole Res-
onance, etc.).

So we mainly encounter A > 2.
If we define

Hyp = ) (Ba/2)|aol’ + Y (Cr/2)|onl?,

AL AL

we can define new operators in terms of a,, and &} i
that satisfy [b)\/“/,biu] = 5)\)\15/_“/.



Then a transformation results in
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Here Wy = By
Each vibrational phonon is an angular momentum
eigenstate, |Au). Coupling is via the usual Clebsch-

Gordon coefficients.

Vibrational states were mainly studied in the early
days of nuclear physics by electromagnetic transi-
tions.

If we define M(EX, u) = (Ze/A) [ d3rrtYe, (t)p(r),
we can expand

p(r) = po(r) = Ro(8po/0r) Y~ cx, Y5, (F).
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Then it is possible to obtain M(EX, 1) in terms of
the b operators.

It is customary to define a reduced transition proba-
bility B(EA, A\ — 07%) which is proportional to | M (EX, 1)|?,
and in the earliest days of nuclear physics it be-
came obvious that for true vibrational states B(E?2)



is many, many times the value that a single-nucleon
transition would predict, making clear that the nu-
clear states involved were indeed vibrations involving
many nucleons.

Giant Dipole Resonance:

Experimentally Er(17) is at 79 MeV/AY/3. It can
be understood as an oscillation of the proton and
neutron densities relative to one another. Define

po = pp + pn and dp, = pp — (Po/2). Then

0?6,
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V28pp — (1/%)
Defining k = w/v, we get |

We are interested in A = 1 so the solution we want
1S

5,0p X jl (k"l‘)Ylu(/f)

To get a standing wave impose

(d/dr)j1(kr)|r=r = 0.

The result is kR = 2.08.



The semi-empirical mass formula suggests the speed
of sound is around 73 fm/107%! sec. and if we use
R =1.2A'3 fm, the very simple prediction is

824-1/3 MeV.

A number of other giant resonances are observable,
such as the quadrupole and octopole versions. A
particular target of interest is the giant monopole
resonance, which would allow some insight into nu-
clear compressibility.



Nuclear Rotations:

When shells are about half-filled, spherical symme-
try is badly broken and nuclei display permanent
deformations. The nucleus thus develops a symme-

try axis. Suppose we could locate this axis with an
angle . Then L, = —ihd/0¢, which leads to the
usual uncertainty relation

ApAL, > h.

But the rotational spectra we observe give some de-
gree of information about a possible range of orien-
tations, so we expect a broad band of corresponding
L-states.

Call the symmetry axis the bddy-ﬁxed 3-axis. If ¢

rotates the system about the symmetry axis, then
A¢ — oo. Define Ry = —ih(0/0¢). Then again

| -
' ¢
AR3AG > h. é;es

This means AR3 — 0. >

Let’s take R along axis 1, perpendlcular to 3. We
construct a rigid-rotor Hamﬂtoman

N

2

H. . = 57 with 7 the rotational inertia.
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Fig. 18.13. Moments of in-
ertia of deformed nuclei com-
pared with a rigid sphere as
a function of the deforma-
tion parameter 0. The ex-
treme cases of a rigid ellip-
soid and an irrotational liq-
uid are given for comparison.



Then, in terms of the usual |JM) states,

R2|JM) = J(J + 1)h2|JM).

Remember the parity of an angular momentum eigen-
state is (—1)”7. Because the deformation is invariant
about 1-2 plane reflection, only positive parity states
are allowed, so J must be even.

Therefore E; = (R*J(J +1))/(21), J =0,2,4, etc.
If the rotational inertia does not depend on J (ac-
tually it does, as J gets large), then F; can be ex-
pressed very simply in terms of Fi.

We could model the rotational inertia of the system
as that of a solid ellipsoid, a rigid rotor. Or we could
say that since the deformed nuclei occur in the mid-
dle of shells, there is an irrotational spherical core
of paired nucleons, and a deformed atmosphere of
unpaired nucleons surrounds it. In reality, the mea-
sured rotational inertias lie about halfway between
predicted values for rigid and irrotational systems.

When we examine single-nucleon states outside a de-
formed core (odd-A systems) we get insanely com-
plex spectra which have mainly been explored, like



rotational nuclei themselves, not by nuclear physi-
cists, but rather by nuclear chemists. The deforma-

tion breaks a degeneracy and leads to a new quantum
number K. [See text, pp. 551 - 558, 18.3 and 18.4.)

When we try to describe nuclear deformation in quan-
tum physics we encounter another serious conceptual
problem, namely that the symmetry axis cannot pos-
sibly be a fixed axis in space. This leads to the in-
troduction of the infamous rotation matrix Df,j . (82),
which depends on the Euler angles.

This rotation matrix lets us relate the intrinsic, body-
fixed deformation parameters to the observed “lab”-
system parameters.

For an axially symmetric deformation we need only
one parameter, usually called (5. For quadrupole
deformations, two parameters are needed, asy =
Bcosy and age = (2)71/2Bsiny. These parameters,
and Y9 and Y5 1o allow one to write R(f, ¢) in terms
of 0, ¢, B and ~.
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Figure 12.2. Systematics of the B(E2; 07 — 27) values for the even—even nuclei with N = 82,
Z < 98. The B(E?2) values are expressed in Weisskopf units (WU) (taken from Wood 1992).



