Fermi Gas Model of Nuclei:

We have two different species of spin-1/2 particles
confined to volume V.

Thus ey
__ampTap
dn = (2nh)3 V.

If the system has T = 0 then the density of states

would be
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Two identical particles (ms = 4(1/2)) can be put in
each state so we can write
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All nuclei basically have the same density, so that
V = (47 /3)R? with R = roA/3 and ry ~ 1.2 fm.

Therefore we can take V = (47/3)r§ A.
For most stable nuclei up to A =40, N ~ Z ~ A/2.

Therefore

Pr = DFp = PFn = — 3

/
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If we use hic = 197 MeV-fm we find pg is about 250
MeV /c, and quasi-elastic scattering of electrons from
nuclei gives results that agree surprisingly well with
this and all other predictions of the simple Fermi
gas.
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It’s reasonable to assume the initial nucleon momen-
tum distribution is isotropic. Then vy = ¢?/(2m) +
S, with a width of

oy = V(v —10)?) = lql\/l/3 p2). f

Co

The Fermi momentum is directly related to (P?) by
o
pp = ‘3‘<P2>-

The Fermi energy is just Er = p%/(2m) which is
(250 MeV /c)?/(2(939 MeV)) or 33 MeV.

The typical average binding energy per nucleon, B/A,
is about 8 MeV.

Therefore we can estimate V; for the average poten-
tial seen by a nucleon to be Vy = Er 4+ B, which is
about 41 MeV.

The average KE of a nucleon can also be estimated
(accurately) in the FG picture:
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Table 6.1. Fermi momentum Pr and effective average
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This gives us (E) about 20 MeV. Note that, since
(E) = (P?)/(2m), that (P?) is (3/5)p%, as we noted
earlier.

An important point is that the volume occupied by
a nucleon in a nucleus is V/A ~ (4n/3)rg ~ 7.2

fm3. But the volume of a single nucleon is Vi ~

(47/3)((r2)!/?)3, which is only about 2.1 fm?.

A classical model of the nucleus is not a bunch of
marbles stuck together, it’s more like a swarm of
bees. There is a lot of empty space. Of course
you could argue that all matter is empty space any-
way, because all the particles involved as basic con-
stituents are fundamental point particles of zero vol-
ume.



It is sometimes useful to apply the Fermi gas model
to massless fermions (or fermions that are highly rel-
ativistic, so that all energies are hugely greater than
mc? and it can be neglected).

If we write p = N/V, and use E = pc, then prp =
h(3m2p)1/3, and

Er = he(3n%p)Y/3,

which can be a very useful equation.
Note that E/N = (3/4)Er and p = (1/3)(E/N)p.



NUCLEAR REACTIONS!

In general we have a+A — b+ B. Here are some com-
mon cases... each different outgoing state and type
of particle or system b is called a “reaction channel.”

e ELASTIC SCATTERING: the exit particle is a,

with the same center-of-momentum energy, and A is
still in its original state. [“Elastic channel.”]

o INELASTIC SCATTERING: the exit particle is
a but it has less center-of-momentum energy, and
the target nucleus A is left in an excited state, A*.
[“Inelastic channels.”]

e REACTION: the exit particle b is a different par-
ticle than a, and the residual nucleus B is a dif-
ferent nucleus than A. For example, consider the
famous (d,p) reaction. If we had, say, the process
0Ca(d, p)*' Ca, then there would be a different out-
going proton energy (“channel”) for every excited
state in the nucleus “'Ca that could be energetically
reached during the process.

Calculations are always done in the center-of-momentum

system. The vital quantity is the reaction Q-value,
defined as

Q=[M,+ My — Mg — My]c?.
With this definition the initial and final center-of-



momentum energies are related by Er = E; + Q).

Because the nucleus is such a complex system, it is
not unusual for different channels to be “coupled,” so
that what happens in one specific reaction channel
(for example the reaching of a threshhold for some
particular process) affects other channels.
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INDEPENDENT PARTICLE MODEL:

V(r) =V (r)+ V, (r) (+V.(r) for protons).
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'Two developments in nuclear physics coming just af-
ter the end of World War 2 hit the nuclear physics
community like a thunderbolt. These were:

e The independent particle model, aka
the Shell Model. We will discuss this shortly.
It showed that many excited states of odd-A nuclei
can be viewed as one-nucleon excitations, instead of
the excitations of the entire nucleus that had been

assumed to result in all nuclear states previously
(“the collective model”).

e The Optical Model. This development em-
phasized, because it used the earliest electronic dig-
ital computers to the fullest, that computers were
going to play a major role in physics from then on.

The discovery was that elastic scattering of strongly-
interacting particles from nuclei could be described

in the simplest possible terms, by solving the Schrodinger
equation in a partial wave expansion using a simple,
complex central potential:

Uopt (1) = V(r) + iW (r),

where V' (r) was taken to have the same shape as
the nuclear density. The earliest calculations were
for neutron scattering. When proton scattering was
to be considered, a Coulomb interaction with the



+Ze-charged nucleus had to be included. This was
a harder calculation because the Coulomb potential
results in the solution never converging to a free-
particle solution, since unlike the nuclear potentials,
the Coulomb potential has infinite range. However,
by the late 1950s it was not hard to do such compu-
tations with available large computers.

The potential has to be complex because probability
flux into the elastic channel is less than the incident
probability flux, since in general many other chan-
nels are open.

Even though early calculations were primitive, they
worked spectacularly well. When polarized beams of
particles became available it was possible to measure
the right-left asymmetry of the scattering, (do/dQ2)r— .
(do/d2), and again to describe this extremely well

it was just necessary to add a spin-orbit term:

Uopt(r) =V (r) +iW(r) + Vso(r).

Such a term gives a different overall potential for
j = £+1/2 compared to j = £—1/2, for (for example)
an incoming proton. The result is that the potential
is different for particles predominantly scattering to
the left of the target nucleus, versus particles pre-
dominantly scattering to the right.
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Double Folding Approach for Heavy Ions

V(r) = /drldrzﬂl(1‘1)/02(1"2)1/(1‘12%

with rip = r+ro—rj.

This looks fearful, but remember the convolution
theorem. In momentum space, this six-dimensional
integral can be reduced to three one-dimensional in-
tegrals.

For spinless A; and A, the potential V depends only
on r.

THE FAMOUS NUCLEAR RAINBOW...




PWBA and Direct Reactions:

Another thing that hit the nuclear physics commu-
nity like a thunderbolt around 1950 was the realiza-
tion that certain nuclear reactions could be realis-
tically described using only extremely simple tools.
From Fermi’s Golden Rule, the cross section for a
nuclear reaction should look like

do mqemp kp

dQ - (27‘(‘7’-&2)2 ka

Here, the m’s are the reduced masses and the k’s are
the wave numbers in the incident and exit channels
in the center-of-momentum system.

Without going into details of scattering and collision
theory (there are many entire books on the topic) we
could write the matrix element as

Ve = / WLl xS () Vdbathax s (Fa)dradrsdc,

where we have internal state functions (and coordi-
nates () for the systems a, A, b and B. And of
course r, and rg are the appropriate coordinates for
the entrance and exit channel.

What people realized in about 1950 is that for a re-
action, for example (d,p), with no computers avail-
able, a first try at the calculation would just involve



replacing the two continuum states by plane waves,
and assuming the process occurs at a specific dis-
tance R (where, for example, the neutron enters the
nucleus and the proton is left as an outgoing state).
Then we in effect make a zero-range approximation,
and a plane wave Born approximation, with the in-
tegral over ( just resulting in some constant, call it
CbBaA, and the only remaining coordinate being r.
The zero range approximation sets r = R. In other
words, the initial state is taken as exp(+iky - ry)
and the final state as exp(—ikg - rg), where the zero-
range approximation gives r = r, = rg = R. The
momentum transfer is q = k, — kg, so we wind up
with:

sz' = CbBa,A exp[z’q R}

The next step is to make a partial wave expansion
of the plane wave, to get

Vi = CbBaa Z i*(20 4 1)5¢(qR) Py (cos §').
;

Here 0’ is the angle between q and R, and we can
always choose the direction of R to make 8’ = 0.
Where is the scattering angle 0 in all of this? The
magnitude of ¢ depends directly on 6.



Note that only one term in the sum contributes. The
reason is that, if the target is an even-even nucleus
(which always has a 0% ground state), the only £ that
contributes is the £ of the nuclear state the neutron
goes 1nto.

So with all these approximations the amazingly sim-

ple result is

do , o
-q je(gR)|

Because of the distinctive peaking of the spherical
Bessel function jy(2), the £ of the final state in B is

almost instantly obvious. Note that ¢* = k2 + k%; —
2kqkp cos 8.

By 1960 it was possible to improve the calculations
by using optical model solutions, rather than plane
waves, for x1, (r,) and x;5 (rg). The approximation
was called the distorted-wave Born approximation
(DWBA), and its successes were beyond spectacular.



