$$\begin{array}{c} h \\ & \times 1 \\ & \times$$

Plane Mirrors: The image is *virtual* and q = -p. The magnification M = -q/p is equal to 1.

Spherical Mirror, Concave: The image can be real or virtual. The focal distance f = R/2, where R is the radius of curvature of the mirror. The equation

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$$

determines any one of the quantities if the other two are known. Any calculation should be checked by drawing a ray diagram... you only need two rays. To avoid confusion always indicate the position of the observer of the image on the ray diagram!

Spherical Mirror, Convex: The image is always virtual. Very confusing sign conventions are common. Quantities are given a minus sign when they represent something that is opposite from the standard case, which is not helpful to anyone who does not know what the "standard case" is.

$$M = \frac{h'}{h} = -\frac{q}{p}.$$

f is taken positive for a concave mirror and negative for a convex mirror. ALWAYS draw a ray diagram to check your result. **Thin Lenses:** The same equations can be used for thin double-convex or double-concave lenses. For the first case the focus is positive, for the second case it is negative. ALWAYS draw a ray diagram to check your algebra and numerical work.

Thick Lenses, Lensmaker's Equation:

$$\frac{n_1}{p} + \frac{n_2}{q} = \frac{n_2 - n_1}{R}$$
, one surface.

$$\frac{1}{p} + \frac{1}{q} = [n-1]\left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{1}{f},$$

where R_1 is for the front surface and R_2 is for the back surface.

Aberrations, the Eye, the "diopter," compound microscopes, refracting telescopes, reflecting telescopes.

Lens power in diopters is 1/f where f is in meters.

Mirror and Lens Examples:

A concave mirror gives an image with M = -2. What are p and q in terms of f?

Answer: p = (3/2)f, q = 3f.

A convex mirror gives an image with q = -p/4. What is its focal distance?

Answer: f = -p/3.

A double-convex thin lens has f = p/4. Where is the image?

Answer: q = p/3.

A double-concave thin lens has f=-10 cm and q=-2 cm. What is p?

Answer: p = 2.5 cm.

raytrace

(generic)